Graph Embedding and Dimensionality Reduction - A Survey
نویسنده
چکیده
Dimension reduction is defined as the process of mapping high-dimensional data to a lowerdimensional vector space. Most machine learning and data mining techniques may not be effective for high-dimensional data. In order to handle this data adequately, its dimensionality needs to be reduced. Dimensionality reduction is also needed for visualization, graph embedding, image retrieval and a variety of applications. This paper discuss the most popular linear dimensionality reduction method Principal Component Analysis and the various non linear dimensionality reduction methods such as Multidimensional scaling, Isomap, Locally Linear Embedding, Laplacian Eigen Map, Semidefinite embedding, Minimum Volume Embedding and Structure Preserving Embedding .
منابع مشابه
Graph Embedding and Nonlinear Dimensionality Reduction
Graph Embedding and Nonlinear Dimensionality Reduction
متن کاملDiscriminative Unsupervised Dimensionality Reduction
As an important machine learning topic, dimensionality reduction has been widely studied and utilized in various kinds of areas. A multitude of dimensionality reduction methods have been developed, among which unsupervised dimensionality reduction is more desirable when obtaining label information requires onerous work. However, most previous unsupervised dimensionality reduction methods call f...
متن کاملFace Recognition using a Kernelization of Graph Embedding
Linearization of graph embedding has been emerged as an effective dimensionality reduction technique in pattern recognition. However, it may not be optimal for nonlinearly distributed real world data, such as face, due to its linear nature. So, a kernelization of graph embedding is proposed as a dimensionality reduction technique in face recognition. In order to further boost the recognition ca...
متن کاملGraph Embedding with Constraints
Recently graph based dimensionality reduction has received a lot of interests in many fields of information processing. Central to it is a graph structure which models the geometrical and discriminant structure of the data manifold. When label information is available, it is usually incorporated into the graph structure by modifying the weights between data points. In this paper, we propose a n...
متن کاملNonlinear Dimensionality Reduction for Regression
The task of dimensionality reduction for regression (DRR) is to find a low dimensional representation z ∈ R of the input covariates x ∈ R, with q p, for regressing the output y ∈ R. DRR can be beneficial for visualization of high dimensional data, efficient regressor design with a reduced input dimension, but also when eliminating noise in data x through uncovering the essential information z f...
متن کامل